- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources3
- Resource Type
-
0000000003000000
- More
- Availability
-
30
- Author / Contributor
- Filter by Author / Creator
-
-
Alatalo, Katherine (3)
-
Lanz, Lauranne (3)
-
Luo, Yuanze (3)
-
Rowlands, Kate (3)
-
Sazonova, Elizaveta (3)
-
Deustua, Susana E. (2)
-
French, K. Decker (2)
-
Heckman, Timothy (2)
-
Nyland, Kristina (2)
-
Otter, Justin A. (2)
-
Petric, Andreea O. (2)
-
Aalto, Susanne (1)
-
Abdurro’uf (1)
-
Armus, Lee (1)
-
Barcos-Muñoz, Loreto (1)
-
Dimassimo, Sabrina (1)
-
Evans, Aaron S (1)
-
Gallagher III, John S. (1)
-
Koda, Jin (1)
-
Larson, Kirsten L (1)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract We present the CO(1–0) maps of 28 infrared-bright galaxies from the Great Observatories All-Sky Luminous Infrared Galaxy Survey (GOALS) taken with the Combined Array for Research in Millimeter Astronomy (CARMA). We detect 100 GHz continuum in 16 of the 28 CARMA GOALS galaxies, which trace both active galactic nuclei (AGNs) and compact star-forming cores. The GOALS galaxies show a variety of molecular gas morphologies, though in the majority of cases the average velocity fields show a gradient consistent with rotation. We fit the full continuum spectral energy distributions (SEDs) of each of the sources using eithermagphysor SED3FIT (if there are signs of an AGN) to derive the total stellar mass, dust mass, and SFRs of each object. We adopt a value determined from luminous and ultraluminous infrared galaxies (LIRGs and ULIRGs) ofαCO= M⊙(K km s−1pc2)−1, which leads to more physical values forfmoland the gas-to-dust ratio. Mergers tend to have the highest gas-to-dust ratios. We assume the cospatiality of the molecular gas and star formation and plot the CARMA GOALS sample on the Schmidt–Kennicutt relation, where we find that they preferentially lie above the line set by normal star-forming galaxies. This hyper-efficiency is likely due to the increased turbulence in these systems, which decreases the freefall time compared to star-forming galaxies, leading to “enhanced” star formation efficiency. Line wings are present in a non-negligible subsample (11/28) of the CARMA GOALS sources and are likely due to outflows driven by AGNs or star formation, gas inflows, or additional decoupled gas components.more » « less
-
Sazonova, Elizaveta; Alatalo, Katherine; Rowlands, Kate; Deustua, Susana E.; French, K. Decker; Heckman, Timothy; Lanz, Lauranne; Lisenfeld, Ute; Luo, Yuanze; Medling, Anne; et al (, The Astrophysical Journal)
-
Luo, Yuanze; Rowlands, Kate; Alatalo, Katherine; Sazonova, Elizaveta; Abdurro’uf; Heckman, Timothy; Medling, Anne M.; Deustua, Susana E.; Nyland, Kristina; Lanz, Lauranne; et al (, The Astrophysical Journal)Abstract We present a multiwavelength study of IC 860, a nearby post-starburst galaxy at the early stage of transitioning from blue and star forming to red and quiescent. Optical images reveal a galaxy-wide, dusty outflow originating from a compact core. We find evidence for a multiphase outflow in the molecular and neutral gas phase from the CO position–velocity diagram and NaD absorption features. We constrain the neutral mass outflow rate to be ∼0.5M⊙yr−1, and the total hydrogen mass outflow rate to be ∼12M⊙yr−1. Neither outflow component seems able to escape the galaxy. We also find evidence for a recent merger in the optical images, CO spatial distribution, and kinematics, and evidence for a buried active galactic nucleus in the optical emission line ratios, mid-IR properties, and radio spectral shape. The depletion time of the molecular gas reservoir under the current star formation rate is ∼7 Gyr, indicating that the galaxy could stay at the intermediate stage between the blue and red sequence for a long time. Thus the timescales for a significant decline in star formation rate (quenching) and gas depletion are not necessarily the same. Our analysis supports the quenching picture where outflows help suppress star formation by disturbing rather than expelling the gas and shed light on possible ongoing activities in similar quenching galaxies.more » « less
An official website of the United States government
